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Numerical Analysis of a TMOIO Cavity for Dielectfi,C

Measurement
Xiaolu Zhao, Ce Liu, Member, IEEE, and Liang C. Shen, Fellow IEEE

Abstract–The property of a TMO,O cavity containing a lossy

dielectric material is obtained by using the transmission-line-
matrix (TLM) technique with serial nodes in cylindrical coor-

dinates. The TMO,O cavity operating at 1.1 GHz has three con-
centric layers and an air gap between the sample and cavity
cover. The influence of this air gap in terms of the Q-factor and
the resonant frequency is studied by the numerical method.

Employing the serial graded TLM technique, the resonant curve

of the cavity is computed. From this, the Q factor and the cen-

ter frequency can be evaluated. In the TLM method, the entire

cavity space is discretized into small cells, Maxwell’s equations
in each cell are transformed into a matrix of transmission line

equations. The voltage and the current in the inter-connected

transmission line network are proportional to the electric and
the magnetic field. The formulation of tbe method is in cylin-
drical coordinates and each cell may hawe different physical

dimensions. Compared with the TLM mlethod in rectangular
coordinates and uniform grids, the present method is more ef-
ficient and easier to program for the anal,ysis of the cavity with

cylindrical symmetry. Computed results show that the air gap

between the sample and cavity cover is very critical to the ac-

curacy of the measurement of the dielectric property of the

sample when the sample diameter is small, but negligible when
the diameter of the sample is large,

INTRODUCTION

T HE MEASUREMENT of the conductivity a and the

relative dielectric perrnittivity ~, at ultra-high fre-

quency for highly lossy materials is important for many

industrial applications [1] –[5]. Unfortunately, many mea-

surement setups are not totally accurate because of the

high conductivity of the material. On&of the useful meth-

ods is the TMOIO cavity measurement system which uses

a very thin sample holder at the center of the cavity [3],

[4] within which a lossy sample is placed. This system

has the advantage of allowing the sample temperature and

sample pressure to be easily controlled. Since the sample

holder is thin and filled with highly conductive material,

an air gap between the sample and the cavity cover may

have an important effect on the accuracy of the measure-

ment. Understanding the degree of influence of the air gap

is essential to the interpretation of measured data, Ana-

lytic and perturbation solutions are n~ot available for the

case when the air gap exists [3]. In the discussion to fol-
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low, the center frequency of the cavity is set at about 1.1

GHz. The reason for this frequency choice is that 1.1 GHz

is the operating frequency of a recent developed dielectric

well logging tool.

The transmission line matrix (TLM) method is used in

this paper to study the effect of the air gap. The TLM

method in rectangular coordinates is discussed in [6]--[8].

A summary paper was published by Hoefer [9]. Detailed

applications and properties of the TLM method are also

illustrated by Hoefer in [10]. A1-Mukhtar and Sitch [11]

discussed the two-dimensional TLM method in polar co-

ordinates (r – 6 system). In the case of cylindrical coor-

dinates with axial symmetry (r – z system), a paper was

published by Liu and Shen [12] discussing TLM method

for TE modes. In regard to TE modes, a shunt TLM node

is used to simulate the Maxwell’s equations. The energy

loss due to the conductivity of the sample is directly re-

lated to the E field in the cavity. Since voltages at the

TLM nodes are used to simulate the E field, conductivity

of the sample is included in the scattering matrix of each

node without changing the scattering process. When TM

mode is assumed in the computation, serial nodes are

used. Consequently, conductivity can not be included in

the scattering matrix of the node which describes the in-

teraction between H fields. The energy loss due to the

conductivity of the sample has to be taken account by an

additional shunt node which is connected to adjacent se-

rial nodes. Thus, a serial-shunt nodes structure is used for

the simulaticm of Maxwell’s equations in the TM mode.

This TLM structure results in the change of the algorithm

described in [12]. In each iteration, two scattering pro-

cesses are involved. One is at the serial nodes and the

other at the shunt nodes.

MAXWELL AND TRANSMISSION LINE EQUATIONS

A cylindrical TMOIO resonant cavity for the measure-

ment of the complex dielectric constant of Io$sy materials

is shown in Fig. 1. The system is axially symmetrical.

The sample holder, which is usually made of plexiglass,

is located at the center of the cavity. Samples are ma-

chined to cylinders and placed into the sample holder. The

central part of the upper cover of the cavity is removable
to allow ease of sample installment. It is quite possible in
the practical operation that a small gap exists between the

sample and the cavity cover.

The fields in the cavity are only functions of r and z
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Flg. 1. The TMOIO resonant cavity for dielectric measurements

since axial symmetry is maintained in the system. The

Maxwell’s equations for TM mode inside the cavity with

the assumption of axial symmetry are as follows: +r
12 m mrnax

e —Serial node o—Shunt node
(1)

Fig. 2. The transmission line matrix in cawty space.

(2)
where C, and Cc are shunt capacitances in farads in z and

r directions respectively, G, and G: are shunt conduc-

tance in mhos in r and z directions, respectively, and L,z
is the total inductance of the node in henrys. Define

aEr aEz aHd
(3]

d2–ar=–p&

where, ~, o and p are dielectric perrnittivity, electric con-
ductivity, and magnetic permeability of the medium, re-

spectively.

Since the present problem is two-dimensional, like the

finite difference method, we first divide the area of inter-

est into small cells, as shown in Fig. 2. Each cell has a

length of A r in the r direction and Az in the z direction.

A r and AZ may be different in length from cell to cell.

The electromagnetic fields in each cell satisfy Maxwell’s

equations ( l)–(3).

To simulate Maxwell’s equations in each cell shown in

Fig. 2, a transmission line node is placed in the cell. Each

node has five interconnected transmission lines. Each arm

of the linking line to the next node is connected to a shunt

node. At this point, a conductance is connected in paral-

lel. Because the conductive loss is related to the E-field

[(1) and (2)], the simulation of these two equations with

transmission line node must have a common voltage. This

means a shunt node has to be used. Therefore, the con-

ductance located at the TLM shunt node as shown in Fig.

3(a) is separated from the serial node by a time delay of

7/2 as shown in Fig. 3(b). The serial connected lines sim-

ulate (3) and the others simulate (1) and (2). The current

and voltage equations in the TLM node are as follows:

I@ = rH@ (7)

V, = A ZEZ (8)

V, = –ArE, (9)

wA r
cr=—

AZ
(10)

ErA Z
cz=—

Ar
(11)

m-A r
G,=—

AZ
(12)

wA z
Gz. —

Ar
(13)

Direct substitution of the above relations to (4)-(6) gives

Maxwell’s equations (l)-(3).
Throughout this procedure, the propagation of current

and voltage in the transmission line matrix shown in Fig.

3 is equivalent to the propagation of the TM wave in an

axially symmetrical space shown in Fig. 1.

(4)
THE TRANSMISSION LINE MATRIX

In evaluating the scattering matrix, the characteristic

impedance of each line must be known. Furthermore, the

propagation speed of current and voltage on each section

of the transmission line matrix must be kept the same so

that the iteration process is synchronized. Note that (10)-

(5)

(6)
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Let

H ‘L r,=rr=r=ha (18)

where h is a constant to be determined later. From (18)
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.
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Fig. 3. (a) The lumped equivalent circuit of a serial TLM unit. (b) The
serial transmission line unit.

(13) define capacitance and conductance of each trans-

mission line node. But in (14), only total inductance LZ,
is specified. L, and L, are allowed to “be adjusted individ-

ually to maintain time synchronization.

Let total serial inductance of the nclde be the sum of L:
and L, plus a residual inductor with inductance L,,

Lz, = L, + L, i- L,. (15)

The propagation time from one node to the next in r and

z direction is given as follows:

and (10) and (1 1), LZ and L, can be found to be

((20)

Therefore, thle residual inductor of the node is found by

substituting (19) and (20) to (15) and (14):

( Ar AZ
L,=@ ArAz–h2— –h2—

)
(21)

r evAz erAr “

The condition for (21) to be valid is that Ls must be po-

sitive or zero, which leads to the following equation:

()
ArAzer

h2 = Min
~r+g

(22)

Az Ar

where Min [ <] means the minimum of the argument value

in the entire region of interest.

Since the inductance and capacitance of the lines in z

and r directicms have now been determined, characteristic

impedances of these lines are given by the following

equations:

r--

J-A rh IJO
z,=—

Aze, r eO

(23)

(24)

A residual inductance is introduced to maintain the time

synchronization. The residual inductance is simulated by
a section of short-circuited transmission line under l~ong

wavelength assumption [11 ]. The impedance of the stub

can be found to be

Infinitive long transmission lines may simulate the con-

ductance [9]-[ 11]. The input admittances, which are also

characteristic admittances, are just equal to those of, the

conductors. ‘That is:

rA ru

“=GV= Az

rA zo
YZ=GZ=—

Ar “

(26)

(27)
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With these parameters, thescattering matrix of these-

rial node can be found to be

+ ;[1] (28)

where Z = 2ZZ + 2Zr + Z~and [1] is a5 X 5 unit matrix.

This scattering matrix links the reflected wave and the in-

cident wave by the following relations:

(29)

where P’ti( j = 1, 5) and V,j (j = 1, 5) are respectively

the incident and reflect voltages at port j, where j is local

coding of the serial transmission line node defined in Fig.

3(b) .

At the shunt node, the scattering matrix is a 2 X 2 ma-

trix. As shown in Figs. 4 and 5, reflection appears not

only because of different impedances of the transmission

line segments from node to node, but also the existence

of the conductance G. and G,. In r direction, as shown in

Fig. 4, the

lows:

Sll =

S22 =

sl~ =

s~, =

where YZ =

With the

scattering matri~ can be determined as fol-

Y,(r – A r, z) – [G, (r, z) + Y,(r, z)] ~30)

Y,(r – Ar, z) + G,(r, z) + Y,(r, z)

Y,(r, z) – [G,(r, z) + Y,(r – A r, z)]
(31)

Y,(r – Ar, z) + G,(r, z) + Y,(r, z)

1 + S22 (32)

1 + s~, (33)

1 /2, and Y, = 1 /Z,.

local coding of shunt transmission line node

defined as shown in F&s. 4 and 5 for r direction and z

direction respectively, the reflected and the incident volt-

age at the shunt node are related by the scattering matrix

as

3
VIi [s]

V(r-Ar,z) Y(r-A I’,Z)

‘1 r Gr(r,z)

iO, NO 10, OCTOBER 1992

_V2i

Y(r,z) V(r,z)

Fig. 4. The scattering matrix at a shunt node (r direction)

V(r,z)

Gr(r,i!)

V(t’, z.Az)

Fig. 5. The scattering matrix at a shunt node (z direction)

Similarly, in the z direction, the elements of the scattering

matrix are as follows:

Y, (r, z – Az) – [Gz(r, z) + Y,(r, z)] (35)
S]l =

Y:(r, z – Az) + G:(r, z) + Y,(r, z)

Y: (r, z) – [G:(r, z) + y, (r, z – Az)] (36)

’22 = YZ(r, z – Az) + G,(r, z) + Y,(r, z)

S12 = 1 + S2’2 (37)

S2I = 1 + s,~. (38)

With the local coding of the port at the shunt node defined

in Fig. 5, the incident and the reflected node voltages are

related by the following equation:

Since the system is axially symmetrical, the axis of the

cylinder is a symmetrical boundary. The iteration equa-

tion at these nodes can be written as

Vin(Ar/2, Z, t + At) = V,(Ar/2, Z, t). (40)

The cavity is assumed to be made of a perfect conduc-

tor. The boundaries formed by the walls of the cavity are

simulated by short-circuited transmission lines. There are

three boundaries which belong to this kind of short-cir-

cuited stub: upper cover, bottom, and the side wall of the

cavity. At the upper cover, the iteration equation is given

as follows:

Vin(r, W – AW/2, t + At)

—– –V,(r, W – AW/2, f) (41)
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where W is the height of the cavity and A W is the grid

length at the boundary in the z direction.

Similarly, at the bottom and the wall of the cavity, the

iteration equations are as follows:

Vi~(rj Az/2, t + At) = –Vr(r$ Az/2, t) (42)

V,n(R – AR/2, z, t + At) = –V,(R – AR/2, Z, t)

(43)

where R is the radius of the cavity and AR is the grid

length at the cavity wall in the r direction.

VERIFICATION OF THE NUMERICAL ANALYSIS

The empty cavity is used for basic verification of the

numerical method. Nonuniform grid is chosen. With dif-

ferent grids show in Fig. 6, for different number of iter-

ation, the computed resonant frequency is compared with

the theoretical values given in [13]. ‘Table I shows, the

comparison of center frequency computed with TLM

technique and the analytical result. In Table I(a), where,,
nodes are non-uniformly graded in the z d~rection, uni-

form grids are applied in r direction. When the number of

iterations is greater than 1000, the relative error which is

defined as (jl~ – fhe.ry) /ftheory is 1=S than 0.5 percent.
When the number of iterations increases, the error mon-

otonically decreases; which reflects good corivergence

property of the method. Table I(b) also shows similar re-

sults when the cavity space is non-uniformity graded in

the r direction.

Another verification is done when the cavity is loaded

with a cylindrical sample of lossless material as shown in

Fig. 7. Table II shows the computed data and comparison

with measured data. This illustrates that the TLM com-

putation has a satisfactory accuracy level.

When the entire cavity is filled with lossy uniform ma-

terial, analytic solution for the Q factor and center fre-

quency can be found [13]. The computed data with TLM

technique in these cases is compared with the analytical

solution as Shown in Table III. In this case, the number

of iteration is greatly increased to achieve a satisfactory

accuracy for Q factor. Resonant frequency is determined

by the center of the resonant curve, while the Q factor is

determined by the shape of the resonant curve, Compared

with resonant frequency, the Q factor needs more itera-

tion to achieve the same accuracy, Physically? this may

be explained as follows: when conductivity is presented

in the system, fields are influenced by low frequency com-

ponents. To take this portion of fields into account, the

contribution from low frequency components has to be

computed, this implies that a wider time window in the

time domain must be chosen.

Tables I-III clearly show that the TLM computation for

the structure with cylindrical symmetry is reasonably ac-

curate when the proper number of iterations is selected.

, cavity axis

1+ 20 x 0.00525(m) 4

(a)

e. cavity axis

E
x
N
u)
c1
q
c)
x

c

10 x 0.008(m)

u)

10 x 0,0025(m)

(b)

Fig. 6. (a) The cavity space is divided into non-unifonm grids in z direc-

tion and uniform grids in r direction. (b) The cavity space is divided into
nonuniform grids in r direction and tiniform grids in z direction.

TABLE I

COMPARISON OF RESONANT FREQUENCY OF AN AIR FILLED TMO,O CAVITY

COMPUTED UY TLM METHOD USING Two DIFFERENT GRIDS WITH

THEORETICAL VALUES

(a) Nonunifomr Grids in z Direction [Fig. 6(a)]

Iteration 1000 2000 3000 5000 Theory
.—

F, (MHz) 1088.3 1090.6 1091.1 1091.5 1093.6

Error –0.48% –0.27% –0.23% –0.19%

(b) Nonuniform Grids in r Direction [Fig. 6(b)]

Iteration 2000 3000 5000 10000 Theory

F. (MHz) 10I85.3 1088.3 1088.9 1089.1 1093.6

Error 0.76% –0.48% –0.43% –0.41%

Cylindrical Sample

\ Cavity Wall

12.7mrn J
210 mm

Fig. 7. A Iossless sample is placed in the cavity. The set-up is used to
verify the TLM method.
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TABLE II

COMPARISON OF THE COMPUTED DATA WITH MEASURED DATA FOR THREE

DIFFERENT SAMPLES

Plexlglas Nylon Teflon

e = 2,69r 6, = 3.04 ~, = 2,o5

FO (MHz)
Measured 1079.37 1076.70 1084.16

F, (MHz)
TLM 1078.80 1076.00 1083.70

TABLE III

COMPARISON OF Q FACTOR COMPUTED BY TLM METHOD WITH

THEORETICAL DATA. THE CAVITY IS UNIFORMLY FILLED WITH

A LossY MATERIAL WITH

e. = 1 ANDo = 0.001

(a) Nonuniform Grids in z Direction [F,g. 6(3)]

Iteration 7500 10000 15000 Theory

F,, (MHz) 10936

Q 54.03 58.21 60.47 60.81
Q Error –11,1% –4.3% –0.56%

(b) Nonuniform Grids in r Direction [Fig. 6(b)]

Iteration 7500 10000 15000 Theory

F. (MHz) 10936

Q 51.83 57.91 60.48
Q Error

60.81
–14.8% –4.8% –0.54%

THE INFLUENCE OF AIR GAP

To study the influence of an air gap on the measurement

accuracy, a numerical model is shown in Fig. 8, in prac-

tical measurements, it is assumed that the sample is per-

fectly connected to the cavity cover. Interpretation of the

measured data is carried out accordingly. Existence of the

air gap between the lossy sample and the cavity cover is

likely in practical measurements. Therefore, the error in-

troduced by the air gap must be accounted for if the effect

is significant,

From a physical point of view, the air gap cuts off the

conductive current connecting the sample to the cavity

cover. To maintain current continuation, displacement

current is set up inside the gap. From the circuit point of

view, a capacitance between the upper surface of the sam-

ple and the cavity cover is formed providing a path for

displacement current to flow. It is apparent that the degree

of influence due to the air gap on the dielectric measure-

ment depends not only on the conductivity of the sample

and the size of the gap, but also on the diameter of the

sample. The sample diameter and the air gap determine

the value of the capacitance.

Numerical computations are designed to investigate

these influences on the measured center frequency and Q

factor. Table IV enumerates the deviations from the val-

ues obtained when taking the data with no gap between

Air ~lled Region

++1-

*’r ‘=m”e D
“GI!JO

EO PI)

I

Fig. 8. The numerical model for the simulation of air gap between the
sample and the upper cover of the cavity.

sample and cavity cover as the base. The sample holder

is assumed to be lossless with a dielectric constant of co.

Theoretically, if there is no discontinuity in the struc-

ture, the change in Q factor is proportional to the change

in volume of the sample. The data in Table IV(a) clearly

show that with the air gap between the sample and cavity

cover, the change in the Q factor of the cavity is greater

than the change in the volume of the sample. Error in Q

factor increases as the diameter of the sample decreases.

A physical picture behind this phenomenon is that if the

gap size is kept unchanged, as the diameter of the sample

decreases, the value of the capacitance formed by the cav-

ity cover and the top area of the sample decreases. This

leads to less current flow in the lossy sample. Conse-

quently, the increase in Q factor is greater than the de-

crease in volume of the sample. For example, when the

gap is 1 mm wide, or 3.9% of the total length of the cav-

ity, the change in the Q factor varies from 4.9% when the

sample radius is 15.75 mm to 26.8% when the radius is

1 mm.

The change in the Q factor increases with the size of

the gap. From Table IV(b), it is seen that errors in center

frequency of the cavity due to the gap are negligible. For

the same diameter of the sample, when the conductivity

of the sample increases, the error due to the air gap in-

creases greatly. This suggests that the discontinuity intro-

duced by the air gap significantly cuts off the conducting

current in the sample. Higher conductivity of the sample

means stronger conducting current in the sample and

hence is more affected by the presence of the gap. The

capacitance coupling in the case of high sample conduc-

tivity couples less energy. Therefore, the error due to the

air gap on the Q factor, which is inversely proportional to

the energy loss in the cavity, will increase as the size of

the air gap increases.

EXPERIMENT RESULTS

An experimental setup for the measurement of the elec-

tric properties of lossy materials was carried out. The

TMOIO cavity made of aluminum has a center frequency
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TABLE IV (a)

INHLUENCE OF AN AIR GAP TO THE Q FACTOR OF THE CAVITY. PARAMETERS ARE GIGEN IN FIG. 8

R=100mm R = 5.25 mm R = 10.50 mm R = 15.75 mm

e, = 20.85 c, = 1.72 e, = 1.18 e, = 1.08

u, = 3.225 u, =0.117 u, = 0.029 u, = 0.013

D (mm) D/L Q AQ (%) Q AQ (%) Q AQ (%) Q AQ (%)

0.0 52.9 53.8 55.2 56.6

1!0 3.9% 67.1 26.8% 58.0 7.8% 58.0 5.1% 59.4 4.9%

2.0 7.9% 74.7 41.2% 62.0 15.2% 61.8 12.0% 62.0 9.5%

5.0 19.7% 93.8 77.3% 74.5 38.5% 72.3 31.0% 72.6 28.3%

TABLE IV (b)
INFLUENCE OF AN AIR GAP TO THE CENTER FREQJENCY OF THE CAVITY. PARAMETERS ARE GIVEN IN FIG. 8

R = 1.00mm R = 5.25 mm R = 10.50 mm R = 15.75 mm
e, = 20.85 6, = 1.72

D (mm)

e, =: 1.18 ~, = 1.08
u, = 3.225 u, =0.117 u, = 0.029 u, = 0.013

0.0 1086.70 1087.45 1087.45 1087.45
1.0 1087.00 1087.45 1087.60 1087.75

2.0 1087.00 1087.60 1087.75 1087.75
5.0 1087.60 1087.90 1088.05 1088.30

TABLE V

COMPARISON OF MEASURED DATE WITH GOOD CONTECT AND WITHOUT CONTECT BETWEEN THE COVER AND

‘THESAMPLE. R IS THE RADIUS OF THE SAMPLE HOLDER

(The outer diameter of the sample holder is 6.35 mm)

20 kppm 13 kppm 8 kppm
R = 0.75 (mm) R = 1.0 (mm) R = 1.25 (mm)

Q
contact 68.9 55.8 51.3
no contact 82.3 63.2 63.2

F (MHz) contact 1071.82 1064.92 1055.40
no contact 1071.20 1064.12 1054.81

A Q 19.4% 13.3% 10.3%

A ,F 0.06% 0,08% 0.06%

of 1093.6 MHz without the sample holder. Three sample

holders with different inner diameters were used for dif-

ferent sample conductivities. At the center part of the up-

per cover of the cavity, a removable metal pin was

mounted for making good connection with the sample.

Current loops were used for the excitation and receiving

of the signal. A HP-8505A Network Analyzer with a

HP-8503A S-Parameter Test Set, and a HP-8501A Stor-

age-Normalizer were used for the measurement. Temper-

ature controller and heating devices were used for the

measurement at different temperatures. The system was

controlled by a HP-9000/216 computer.

Highly conductive saline solutions were used as sam-

ples. Three salinities of the solutions were used: 20 kppm,

13 kppm and 8 kppm. At room temperature, with and
without contact to the upper cover of the cavity, the meas-

ured data agreed with the computed results, as shown in

Table V.

Electrical properties of the highly conductive saline so-

lutions at elevated temperatures were measured with this

setup. Examples of the measured dielectric constant ver-

sus temperature are shown in Fig. 9 for the saline scJu-

tions with salinity of 5 kppm, 10 kppm, 15 kppm, ancl 20

kppm. Fig. 10 shows the measured conductivity of the

saline solutions. At each temperature point, eight inde-

pendent measurements were conduted and the average of

the eight measurements are plotted. The measured data

are compared with the empirical formula given by Saxton

and Lane [2], [5] and the measured data by Han et al. IS].

CONCLUSIONS

The TLM method is useful in the analysis of TMOIO

resonant cavity for dielectric measurements. The air gap

between the 10SSY sample and cavity cover plays an im-

portant role in determining the accuracy of the measure-

ment. The error in the center frequency of the cavity due

to the air gap is negligible. Error in the Q-factor due to
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70
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o
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o

60j
20 30 40 50

Temperature (“C)

Fig. 9. Measured effective dielectric constant of saline solutions at ele-
vated temperatures.

f =1100 MHz

14 I
20 30 40 50

Temperature (oC)

Fig. 10. Measured conductivity of saline solutions at elevated tempera-
tures.

the air gap can be significant when the conductivity of the

sample is high and the diameter of the sample is small.

Unfortunately, in the case of a highly lossy sample, a

small sample diameter must be used to maintain a reason-

ably high Q factor. Our analysis indicates that this is the

worst case in terms of air gap influence. Special tech-

niques, such as applying a connecting needle to the upper

cover of the cavity, are recommended to minimize the er-

ror caused by the air gap.
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