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Numerical Analysis of a TMy,;, Cavity for Dielectric
Measurement

Xiaolu Zhao, Ce Liu, Member, IEEE, and Liang C. Shen, Fellow IEEE

Abstract—The property of a TM,,, cavity containing a lossy
dielectric material is obtained by using the transmission-line-
matrix (TLM) technique with serial nodes in cylindrical coor-
dinates. The TM,,, cavity operating at 1.1 GHz has three con-
centric layers and an air gap between the sample and cavity
cover. The influence of this air gap in terms of the QO-factor and
the resonant frequency is studied by the numerical method.
Employing the serial graded TLM technique, the resonant curve
of the cavity is computed. From this, the Q factor and the cen-
ter frequency can be evaluated. In the TLM method, the entire
cavity space is discretized into small cells. Maxwell’s equations
in each cell are transformed into a matrix of transmission line
equations. The voltage and the current in the inter-connected
transmission line network are proportiounal to the electric and
the magnetic field. The formulation of the method is in cylin-
drical coordinates and each cell may have different physical
dimensions. Compared with the TLM method in rectangular
coordinates and uniform grids, the present method is more ef-
ficient and easier to program for the analysis of the cavity with
cylindrical symmetry. Computed results show that the air gap
between the sample and cavity cover is very critical to the ac-
curacy of the measurement of the dielectric property of the
sample when the sample diameter is small, but negligible when
the diameter of the sample is large.

INTRODUCTION

HE MEASUREMENT of the conductivity o and the

relative dielectric permittivity €, at ultra-high fre-
quency for highly lossy materials is important for many
industrial applications [1]-[5]. Unfortunately, many mea-
surement setups are not totally accurate because of the
high conductivity of the material. One of the useful meth-
ods is the TMg,q cavity measurement system which uses
a very thin sample holder at the center of the cavity [3],
[4] within which a lossy sample is placed. This system
has the advantage of allowing the sample temperature and
sample pressure to be easily controlled. Since the sample
holder is thin and filled with highly conductive material,
an air gap between the sample and the cavity cover may
have an important effect on the accuracy of the measure-
ment. Understanding the degree of influence of the air gap
is essential to the interpretation of measured data. Ana-
Iytic and perturbation solutions are not available for the
case when the air gap exists [3]. In the discussion to fol-
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low, the center frequency of the cavity is set at about 1.1
GHz. The reason for this frequency choice is that 1.1 GHz
is the operating frequency of a recent developed dielectric
well logging tool.

The transmission line matrix (TLM) method is used in
this paper to study the effect of the air gap. The TLM
method in rectangular coordinates is discussed in [6]-[8].
A summary paper was published by Hoefer [9]. Detailed
applications and properties of the TLM method are also
illustrated by Hoefer in [10]. Al-Mukhtar and Sitch [11]
discussed the two-dimensional TLM method in polar co-
ordinates (r — 6 system). In the case of cylindrical coor-
dinates with axial symmetry (r — z system), a paper was
published by Liu and Shen [12] discussing TLM method
for TE modes. In regard to TE modes, a shunt TLM node
is used to simulate the Maxwell’s equations. The energy
loss due to the conductivity of the sample is directly re-
lated to the E field in the cavity. Since voltages at the
TLM nodes are used to simulate the E field, conductivity
of the sample is included in the scattering matrix of each
node without changing the scattering process. When TM
mode is assumed in the computation, serial nodes are
used. Consequently, conductivity can not be included in
the scattering matrix of the node which describes the in-
teraction between H fields. The energy loss due to the
conductivity of the sample has to be taken account by an
additional shunt node which is connected to adjacent se-
rial nodes. Thus, a serial-shunt nodes structure is used for
the simulation of Maxwell’s equations in the TM mode.
This TLM structure results in the change of the algorithm
described in [12]. In each iteration, two scattering pro-
cesses are involved. One is at the serial nodes and the
other at the shunt nodes.

MAXWELL AND TRANSMISSION LINE EQUATIONS

A cylindrical TMyo resonant cavity for the measure-
ment of the complex dielectric constant of lossy matcrials
is shown in Fig. 1. The system is axially symmetrical.
The sample holder, which is usually made of plexiglass,
is located at the center of the cavity. Samples are ma-
chined to cylinders and placed into the sample holder. The
central part of the upper cover of the cavity is removable
to allow ease of sample installment. It is quite possible in
the practical operation that a small gap exists between the
sample and the cavity cover.

The fields in the cavity are only functions of » and z
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Fig. 1. The TMy,, resonant cavity for dielectric measurements.

since axial symmetry is maintained in the system. The
Maxwell’s equations for TM mode inside the cavity with
the assumption of axial symmetry are as follows:

oH, oE,
oz €~ ~ 9 (D
1 o(rH,) JE.
- = ¢—= E.
r Jr ¢ ot o @
é& QEE - _aHd’ (3)
dz ar k at

where, €, o and p are dielectric permittivity, electric con-
ductivity, and magnetic permeability of the medium, re-
spectively.

Since the present problem is two-dimensional, like the
finite difference method, we first divide the area of inter-
est into small cells, as shown in Fig. 2. Each cell has a
length of Ar in the r direction and Az in the z direction.
Ar and Az may be different in length from cell to cell.
The electromagnetic fields in each cell satisfy Maxwell’s
equations (1)-(3).

To simulate Maxwell’s equations in each cell shown in
Fig. 2, a transmission line node is placed in the cell. Each
node has five interconnected transmission lines. Each arm
of the linking line to the next node is connected to a shunt
node. At this point, a conductance is connected in paral-
lel. Because the conductive loss is related to the E-field
[(1) and (2)], the simulation of these two equations with
transmission line node must have a common voltage. This
means a shunt node has to be used. Therefore. the con-
ductance located at the TLM shunt node as shown in Fig.
3(a) is separated from the serial node by a time delay of
7/2 as shown in Fig. 3(b). The serial connected lines sim-
ulate (3) and the others simulate (1) and (2). The current
and voltage equations in the TLM node are as follows:
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Fig. 2. The transmission line matrix in cavity space.

where C, and C. are shunt capacitances in farads in z and
r directions respectively, G, and G, are shunt conduc-
tances in mhos in r and z directions, respectively, and L,,
is the total inductance of the node in henrys. Define

V., = AzE, 8
V, = —A¥rE, 9
C = ﬂ (10
r - AZ )
erAz
C -
= (1)
orAr
G -
- Az (12)
orAz
G_v =
p A7 (13)
ArA
L, = “—:z (14)

Direct substitution of the above relations to (4)-(6) gives
Maxwell’s equations (1)-(3).

Throughout this procedure, the propagation of current
and voltage in the transmission line matrix shown in Fig.
3 is equivalent to the propagation of the TM wave in an
axially symmetrical space shown in Fig. 1.

Tue TransMmissiON LINE MATRIX

In evaluating the scattering matrix, the characteristic
impedance of each line must be known. Furthermore, the
propagation speed of current and voltage on each section
of the transmission line matrix must be kept the same so
that the iteration process is synchronized. Note that (10)-
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Fig. 3. (a) The lumped equivalent circuit of a serial TLM unit. (b) The
serial transmission line unit.

(13) define capacitance and conductance of each trans-
mission line node. But in (14), only total inductance L.,
is specified. L, and L. are allowed to be adjusted individ-
vally to maintain time synchronization.

Let total serial inductance of the node be the sum of L,

and L, plus a residual inductor with inductance L,
L,=L +L +L, (15)

The propagation time from one node to the next in » and
z direction is given as follows:

7, = VLG, (16)
7. = VL,C, (17)
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To maintain time synchronization, 7, and 7, must be equal.
Let

T, =7, =7 = hvpeo

where % is a constant to be determined later. From (18)
and (10) and (11), L, and L, can be found to be

(18)

hZMOAZ

L =———

r rAve, 19)
hz,u.oAr

.= rAze, (20)

Therefore, the residual inductor of the node is found by
substituting (19) and (20) to (15) and (14):

o , Ar , Az
Ly=—{ArAz —h"—— = h .
r < ras €Az e,Ar) @h

The condition for (21) to be valid is that L, must be po-
sitive or zero, which leads to the following equation:

ArAze,
Ar Az
P + JE—
Az Ar

h* = Min (22)

where Min [*] means the minimum of the argument value
in the entire region of interest.

Since the inductance and capacitance of the lines in z
and r directions have now been determined, characteristic
impedances of these lines are given by the following

equations:
z - Azh {@ (23)
Are,r\ e
Arh
A 24)
Aze,r\ g

A residual inductance is introduced to maintain the time
synchronization. The residual inductance is simulated by
a section of short-circuited transmission line under long
wavelength assumption [11]. The impedance of the stub
can be found to be

z, == B (araz - w22 . @5
rh'\eo< rec €Az car) P

Infinitive long transmission lines may simulate the con-
ductances [9]-[11]. The input admittances, which are also
characteristic admittances, are just equal to those of the
conductors. That is:

rAro

Y, =G, = Az (26)
rAzo

. - Y = . 27

Y, =G =— @7)
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With these parameters, the scattering matrix of the se-
rial node can be found to be

z 7z, Z, -7, —Z,
zZ, Z. -7, Z, Z,
5] =% z. -z, Z, Z, Z
-z, 7, 7, Z, -Z,
-z, Z, Z, -Z, -Z, +Z + Z,
L (28)
Z

where Z =27, + 2Z, + Z and [I]is a 5 X 5 unit matrix.
This scattering matrix links the reflected wave and the in-
cident wave by the following relations:

Vi Sy S1z Sz Sie Sis Vi
Vi Sp1 S22 S23 S 825 Vo
Vi3 = 831 S32 33 S34 S35 Vs
Vi S41 S4p 543 Sa4 S5 Vi
Vs S51 Ss2 Ss3 Ssa Sss Vis
(29)
where Vij( j=15 and V,;(j = 1, 5) are respectively

the incident and reflect voltages at port j, where j is local
coding of the serial transmission line node defined in Fig.
3(b).

At the shunt node, the scattering matrix is a 2 X 2 ma-
trix. As shown in Figs. 4 and 5, reflection appears not
only because of different impedances of the transmission
line segments from node to node, but also the existence
of the conductance G, and G,. In r direction, as shown in
Fig. 4, the scattering matrix can be determined as fol-
lows:

Y.(r — Ar, ) — [G,(r, 2) + Y,(r, 2)]

MY AR TGt Ling
5 = Y.(r,2) = [G,(r,2) + ¥,(r — Ar, )] 31)
Y.(r — Ar, 2) + G.(r, 2) + Y,(r, 2)

Sp =1+ sp (32)
55 = 1 + sy (33)

where Y, = 1/Z.and ¥, = 1/Z,.

With the local coding of shunt transmission line node
defined as shown in Figs. 4 and 5 for r direction and z
direction respectively, the reflected and the incident volt-
age at the shunt node are related by the scattering matrix

as
<V1r(rs Z)> _ <511 512> <V1i(", Z)>. (34)
Vor (7, 2) Sap Sx Vi (7, 2)

Vi [s] | _Vai

—

V(r-At,z) Y(r-Ar,2z) % Y(r,z) V(r,2)

Vi «—G(r,2)}— Vo,

Fig. 4. The scattering matrix at a shunt node (r direction).
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Fig. 5. The scattering matrix at a shunt node (z direction).

Similarly, in the z direction, the elements of the scattering
matrix are as follows:

Y,(r,z — Az) — [G,(r, 2) + Y (7, 2)]
Y (r.z — Az) + G(r, 2) + Y,(r, 2)
Y:(r’ 7) = [G:(r’ 7) + Yz(ra z— A7)l

2T Y.(r,z ~ A7) + G,(r, 2) + Y,(r, 2) G0

S11 = (35)

(37
(38)

With the local coding of the port at the shunt node defined
in Fig. 5, the incident and the reflected node voltages are
related by the following equation:

<V1r(r’ Z)> _ <511 512> <V1i('”, Z)>. 39)
Vo (r, 2) So1 S Vi (r, 2)

Since the system is axially symmetrical, the axis of the
cylinder is a symmetrical boundary. The iteration equa-
tion at these nodes can be written as

Vi(Ar/2,z,t + Af) = V.(Ar/2, z, 1).

Sip = 1 +522

S91 = 1+ St11-

40)

The cavity is assumed to be made of a perfect conduc-
tor. The boundaries formed by the walls of the cavity are
simulated by short-circuited transmission lines. There are
three boundaries which belong to this kind of short-cir-
cuited stub: upper cover, bottom, and the side wall of the
cavity. At the upper cover, the iteration equation is given
as follows:

Vi(r, W — AW/2, t + Af)

= —V.(r, W — AW/2, 0 41)
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where W is the height of the cavity and AW is the grid
length at the boundary in the z direction.

Similarly, at the bottom and the wall of the cavity, the
iteration equations are as follows:

Vin(r, Az/2,t + A

i

—V,(r, Az/2, 6 (42)

V.(R — AR/2,z, t + A

]

~V,(R — AR/2, 2, 1)
(43)

where R is the radius of the cavity and AR is the grid
length at the cavity wall in the r direction.

VERIFICATION OF THE NUMERICAL ANALYSIS

The empty cavity is used for basic verification of the
numerical method. Nonuniform grid is chosen. With dif-
ferent grids show in Fig. 6, for different number of iter-
ation, the computed resonant frequency is compared with
the theoretical values given in [13]. Table I shows the
comparison of center frequency computed with TLM
technique and the analytical result. In Table I(a), where
nodes are non-uniformly graded in the z direction, uni-
form grids are applied in r direction. When thé number of
iterations is greater than 1000, the relative error which is
defined as (fim — fineory) / fineory is less than 0.5 percent.
When the number of iterations increases, thé error mon-
otonically decreases; which reflects good corvergence
property of the method. Table I(b) also shows similar re-
sults when the cavity space is non-uniformity graded in
the 7 direction.

Another verification is done when the cavity is loaded
with a cylindrical sample of lossless material as shown in
Fig. 7. Table II shows the computed data and comparison
with measured data. This illustrates that the TLM com-
putation has a satisfactory accuracy level.

When the entire cavity is filled with lossy uniform ma-
terial, analytic solution for the Q factor and center fre-
quency can be found [13]. The computed data with TLM
technique in these cases is compared with the analytical
solution as §hown in Table III. In this case, the number
of iteration is greatly increased to achieve a satisfactory
accuracy for Q factor. Resonant frequency is determined
by the center of the resonant curve, while the Q factor is
determined by the shape of the resonant curve. Compared
with resonant frequency, the Q factor needs more itera-
tion to achieve the same accuracy. Physically, this may
be explained as follows: when conductivity is presented
in the system, fields are influenced by low frequency com-
ponents. To take this portion of fields into account, the
contribution from low frequency components has to be
computed, this implies that a wider time window in the
time domain must be chosen.

Tables I-1II clearly show that the TLM computation for
the structure with cylindrical symmetry is reasonably ac-
curate when the proper number of iterations is selected.
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Fig. 6. (a) The cavity spaee is divided into non-uniform grids in z direc-
tion and uniform grids in r direction. (b) The cavity space is divided into
nonuniform grids in r direction and dniform grids in z direction.

TABLE 1
COMPARISON OF RESONANT FREQUENCY OF AN AIR FILLED TMg;o CAVITY
ComPUTED BY TLM METHOD USING TWO DIFFERENT GRIDS WITH
THEORETICAL VALUES

(a) Nonuniform Grids in z Direction [Fig. 6(a)]

Iteration 1000 2000 3000 5000 Theory
Fo (MHz)  1088.3 1090.6 1091.1 1091.5 1093.6
Error —0.48% -0.27% -0.23% -0.19%
(b) Nonuniform Grids in » Direction [Fig. 6(b)]
Iteration 2000 3000 5000 10000 Theory
F, (MHz) 1085.3 1088.3 1088.9 1089.1 1093.6
Error 0.76% —0.48% —0.43% —0.41%
Cylindrical Sample
Cavity Wall
. = I
&
<
«
b T
< -
P!
< 12.7mm >
210 mm

Fig. 7. A lossless sample is placed in the cavity. The set-up is used to
verify the TLM method.
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TABLE 11
COMPARISON OF THE COMPUTED DATA WITH MEASURED DATA FOR THREE
DIFFERENT SAMPLES

Plexiglas Nylon Teflon
€, = 2.69 e, = 3.04 ¢, =2.05
F, (MHz)
Measured 1079.37 1076.70 1084.16
F, (MHz)
TLM 1078.80 1076.00 1083.70
TABLE 111

COMPARISON OF Q FACTOR COMPUTED BY TLM METHOD WITH
THEORETICAL DATA. THE CAVITY 1S UNIFORMLY FILLED WITH
A LOSSY MATERIAL WITH
e, = 1 AND ¢ = 0.001

(a) Nonuniform Grids in z Direction [Fig. 6(a)]

Iteration 7500 10000 15000 Theory
F, (MHz) 1093 6
Q 54.03 58.21 60.47 60.81
Q Error -11.1% -4.3% —0.56%

(b) Nonuniform Grids in r Direction [Fig. 6(b)]

Iteration 7500 10000 15000 Theory
Fy (MHz) 1093 6
Q 51.83 57.91 60.48 60.81
Q Error -14.8% -4.8% -0.54%

THE INFLUENCE OF AIR GaP

To study the influence of an air gap on the measurement
accuracy. a numerical model is shown in Fig. 8, in prac-
tical measurements, it is assumed that the sample is per-
fectly connected to the cavity cover. Interpretation of the
measured data is carried out accordingly. Existence of the
air gap between the lossy sample and the cavity cover is
likely in practical measurements. Therefore, the error in-
troduced by the air gap must be accounted for if the effect
is significant.

From a physical point of view, the air gap cuts off the
conductive current connecting the sample to the cavity
cover. To maintain current continuation, displacement
current is set up inside the gap. From the circuit point of
view, a capacitance between the upper surface of the sam-
ple and the cavity cover is formed providing a path for
displacement current to flow. It is apparent that the degree
of influence due to the air gap on the dielectric measure-
ment depends not only on the conductivity of the sample
and the size of the gap, but also on the diameter of the
sample. The sample diameter and the air gap determine
the value of the capacitance.

Numerical computations are designed to investigate
these influences on the measured center frequency and QO
factor. Table IV enumerates the deviations from the val-
ues obtained when taking the data with no gap between
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Fig. 8. The numerical model for the simulation of air gap between the
sample and the upper cover of the cavity.

sample and cavity cover as the base. The sample holder
is assumed to be lossless with a dielectric constant of .

Theoretically, if there is no discontinuity in the struc-
ture, the change in Q factor is proportional to the change
in volume of the sample. The data in Table IV(a) clearly
show that with the air gap between the sample and cavity
cover, the change in the Q factor of the cavity is greater
than the change in the volume of the sample. Error in Q
factor increases as the diameter of the sample decreases.
A physical picture behind this phenomenon is that if the
gap size is kept unchanged, as the diameter of the sample
decreases, the value of the capacitance formed by the cav-
ity cover and the top area of the sample decreases. This
leads to less current flow in the lossy sample. Conse-
quently, the increase in Q factor is greater than the de-
crease in volume of the sample. For example, when the
gap is 1 mm wide, or 3.9% of the total length of the cav-
ity, the change in the Q factor varies from 4.9% when the
sample radius is 15.75 mm to 26.8% when the radius is
1 mm.

The change in the Q factor increases with the size of
the gap. From Table IV(b), it is seen that errors in center
frequency of the cavity due to the gap are negligible. For
the same diameter of the sample, when the conductivity
of the sample increases, the error due to the air gap in-
creases greatly. This suggests that the discontinuity intro-
duced by the air gap significantly cuts off the conducting
current in the sample. Higher conductivity of the sample
means stronger conducting current in the sample and
hence is more affected by the presence of the gap. The
capacitance coupling in the case of high sample conduc-
tivity couples less energy. Therefore, the error due to the
air gap on the Q factor, which is inversely proportional to
the energy loss in the cavity, will increase as the size of
the air gap increases.

EXPERIMENT RESULTS

An experimental setup for the measurement of the elec-
tric properties of lossy materials was carried out. The
TMoo cavity made of aluminum has a center frequency



ZHAQ et al : NUMERICAL ANALYSIS OF A TM,,, CAVITY FOR DIELECTRIC MEASUREMENT

1957

TABLE IV (a)
INFLUENCE OF AN AIR GAP TO THE Q FAacTOR OF THE CAVITY. PARAMETERS ARE GIGEN IN F1G. 8

R = 1 00 mm R = 5.25 mm R = 10.50 mm R = 15.75 mm
¢, = 20.85 ¢ =172 e, = 1.18 e = 1.08
o, = 3.225 oy = 0.117 g, = 0.029 g, = 0.013
D (mm) D/L o AQ (%) Q AQ (%) Y AQ (%) Q AQ (%)
0.0 52.9 53.8 55.2 56.6
1.0 3.9% 67.1 26.8% 58.0 7.8% 58.0 5.1% 59.4 4.9%
2.0 7.9% 74.7 41.2% 62.0 15.2% 61.8 12.0% 62.0 9.5%
5.0 19.7% 93.8 77.3% 74.5 38.5% 72.3 31.0% 72.6 28.3%

TABLE IV (b)
INELUENCE OF AN AIR GAP TO THE CENTER FREQUENCY OF THE CAVITY. PARAMETERS ARE GIVEN IN FIG. 8

R = 1.00 mm R =5.25 mm R = 10.50 mm R = 15.75 mm

¢, = 20.85 ¢ =172 e = 1.18 e = 1.08

D (mm) o, = 3.225 o, = 0.117 o, = 0.029 g, = 0.013
0.0 1086.70 1087.45 1087.45 1087.45
1.0 1087.00 1087.45 1087.60 1087.75
2.0 1087.00 1087.60 1087.75 1087.75
5.0 1087.60 1087.90 1088.05 1088.30

TABLE V

COMPARISON OF MEASURED DATE WITH GOOD CONTECT AND WITHOUT CONTECT BETWEEN THE COVER AND
THE SAMPLE. R IS THE RADIUS OF THE SAMPLE HOLDER
(The outer diameter of the sample holder is 6.35 mm)

20 kppm 13 kppm 8 kppm
R = (.75 (mm) R = 1.0 (mm) R = 1.25 (mm)

0 contact 68.9 55.8 51.3
no contact 82.3 63.2 63.2

F (MHz) contact 1071.82 1064.92 1055.40

no contact 1071.20 1064.12 1054.81
AQ 19.4% 13.3% 10.3%

AF 0.06% 0.08% 0.06%

of 1093.6 MHz without the sample holder. Three sample
holders with different inner diameters were used for dif-
ferent sample conductivities. At the center part of the up-
per cover of the cavity, a removable metal pin was
mounted for making good connection with the sample.
Current loops were used for the excitation and receiving
of the signal. A HP-8505A Network Analyzer with a
HP-8503A S-Parameter Test Set, and a HP-8501A. Stor-
age-Normalizer were used for the measurement. Temper-
ature controller and heating devices were used for the
measurement at different temperatures. The system was
controlled by a HP-9000/216 computer.

Highly conductive saline solutions were used as sam-
ples. Three salinities of the solutions were used: 20 kppm,
13 kppm and 8 kppm. At room temperature, with and
without contact to the upper cover of the cavity, the meas-
ured data agreed with the computed results, as shown in
Table V.

Electrical properties of the highly conductive saline so-

lutions at elevated temperatures were measured with this
setup. Examples of the measured dielectric constant ver-
sus temperature are shown in Fig. 9 for the saline solu-
tions with salinity of 5 kppm, 10 kppm, 15 kppm, and 20
kppm. Fig. 10 shows the measured conductivity of the
saline solutions. At each temperature point, eight inde-
pendent measurements were conduted and the average of
the eight measurements are plotted. The measured data
are compared with the empirical formula given by Saxton
and Lane [2], [5] and the measured data by Han et al. [5].

CONCLUSIONS

The TLM method is useful in the analysis of TMg
resonant cavity for dielectric measurements. The air gap
between the lossy sample and cavity cover plays an im-
portant role in determining the accuracy of the measure-
ment. The error in the center frequency of the cavity due
to the air gap is negligible. Error in the Q-factor due to
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Fig. 9. Measured effective dielectric constant of saline solutions at ele-
vated temperatures.
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Fig. 10. Measured conductivity of saline solutions at elevated tempera-
tares.

the air gap can be significant when the conductivity of the
sample is high and the diameter of the sample is small.
Unfortunately, in the case of a highly lossy sample, a
small sample diameter must be used to maintain a reason-
ably high Q factor. Our analysis indicates that this is the
worst case in terms of air gap influence. Special tech-
niques, such as applying a connecting needle to the upper
" cover of the cavity, are recommended to minimize the er-
ror caused by the air gap.
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